ヤマモト エイコ   Eiko Yamamoto
  山本 英子
   所属   経済情報学部
   職種   教授
言語種別 英語
発行・発表の年月 2020/10
形態種別 研究論文(国際会議プロシーディングス)
査読 査読あり
標題 Improving Semantic Similarity Calculation of Japanese Text for MT Evaluation
執筆形態 共著
掲載誌名 Proc. of 34th Pacific Asia Conference on Language, Information and Computation (PACLIC2020)
掲載区分国外
総ページ数 9
著者・共著者 Yuki Tanahashi, Kyoko Kanzaki, Eiko Yamamoto and Hitoshi Isahara
概要 We verified the method by calculating the Pearson correlation between the modified BERTScore and human-rated scores. Further-more, we set four BERT models and two kinds of corpora to calculate idf value, and investigated which setting is most suitable for evaluation of novel translation. As a result, the setting with the model based on novel corpus, the idf based novel corpus and the penalty had the highest correlation with human-rated scores.