ミヤガワ ムツミ   Miyagawa Mutsumi
  宮川 睦巳
   所属   前橋工科大学  工学部 社会環境工学科
   前橋工科大学大学院  工学研究科 環境・生命工学専攻(博士課程)
   前橋工科大学  工学部 建築・都市・環境工学群
   前橋工科大学大学院  工学研究科 建設工学専攻(修士課程)
   職種   准教授
言語種別 英語
発行・発表の年月 2018/12/15
形態種別 研究論文 
査読 査読あり
標題 Analysis of an isotropic elastic matrix with two elliptical voids or rigid inclusions under anti-plane loading
執筆形態 共著
掲載区分国外
巻・号・頁 5(Issue 6),pp.18-00333
担当区分 筆頭著者
概要 This paper presents theoretical solutions for cases of a two-dimensional isotropic elastic matrix containing two elliptical voids or rigid inclusions under anti-plane loading. These two ellipses have different long-axial radii, short-axial radii, inclining angles, and central points. Their geometries are arbitrary. The matrix is assumed to be subjected to arbitrary loading by, for example, uniform shear stresses, as well as to a concentrated force and screw dislocation at an arbitrary point. The solutions are obtained through iterations of the Möbius transformation as a series with an explicit general term involving the complex potential functions of the corresponding homogeneous problem. This procedure is referred to as heterogenization. Using these solutions, several numerical examples are presented graphically.